
1
© 2007 The University of Texas at Austin

Test ExecutionTest Execution
Developing Test Cases from Requirements
and Use Cases
Running Dynamic Tests and Documenting
Results
Evaluating Results – Defect Identification
What’s a problem? What’s not?
Reporting Results - Working with
Development on Fixes
Debugging and Re-Testing
Test Status Report

2
© 2007 The University of Texas at Austin

Dynamic TestingDynamic Testing

Exercising the software code on a computer
system to see if it performs according to
the specifications and requirements

Will the software perform accurately,
reliably and consistently when released
for business use?

Discover and repair as many defects as
possible prior to release

“A successful test is one
that finds an error.”

- Glenford Myers

“A successful test is one
that finds an error.”

- Glenford Myers

3
© 2007 The University of Texas at Austin

Dynamic TestingDynamic Testing
Quality cannot be
tested-in
No amount of testing
can prove that a defect
does not exist
Testing is expensive –
balance the cost with
the returns
Test ‘smart’ – consider:

Complexity
Risk
Expected Usage

“Testing
cannot show
us the absence
of defects…
it can only
show us that
defects are
present.”

- Robert
Pressman

“Testing
cannot show
us the absence
of defects…
it can only
show us that
defects are
present.”

- Robert
Pressman

4
© 2007 The University of Texas at Austin

The VThe V--Shaped Model for V&VShaped Model for V&V
Emphasis on verification and validation ‘as you go’

Developers and other IT staff will perform many
tests as the software is developed

Unit testing is done during code development
Integration testing is done as components are
assembled according to the design

Business Rqmts

Software Rqmts

Software Design

Code Unit Test

Integration Test

System Test

Acceptance Test

Developer
Testing

User
Testing

5
© 2007 The University of Texas at Austin

Developer TestsDeveloper Tests
White box testing based on knowledge of the
internal logic of the code
Unit testing is the smallest scale of testing - done
on the module level before the user interface is
developed
Tests that analyze the code statements, branches,
paths and conditions for:

Technical accuracy
Standards
Data integrity and structure
Logic
Compatibility
Internal communications and connections

Users may want to be informed about the results of
previous testing efforts in terms of:

Complexity
Previous ‘hot’ spots

6
© 2007 The University of Texas at Austin

System TestsSystem Tests
Black-box testing is done through the user
interface without regard to the internal
working of the software
End-to-end testing once all components are
assembled and placed in a executable
environment (configuration and compatibility
tests)
Performance or stress testing – tests the
performance at peak loads
Installation testing – tests the process for
installing, upgrading or uninstalling the
software
Recovery testing – tests software behavior
during an unexpected interruption and it’s
recovery for such an event
Security testing – how well the software
protects against unauthorized use and threats

7
© 2007 The University of Texas at Austin

System Test CasesSystem Test Cases
Are designed to find conditions that could
cause the software to fail or produce
unexpected results
Test both functional and non-functional
requirements
Some system test cases should be completed
before involving users – to shake out all the
obvious defects - sometimes known as sanity
or smoke testing.
Includes both positive and negative test cases

Positive – does the software do what it’s
supposed to do?
Negative – does the software not do what
it’s not supposed to do?

8
© 2007 The University of Texas at Austin

User TestingUser Testing
System Testing – generally done by IT or QA
testers but users may be involved
Usability Testing – includes users performing
normal tasks using the software and
usability specialists recording observations
Note: Users should review the results of
system and usability testing
Acceptance Testing – is done by the users
but may also be performed by an
independent test group. May include:

Alpha testing – in a test environment
Beta – in the user’s environment

Parallel Testing – running the new software
simultaneously with the existing software

9
© 2007 The University of Texas at Austin

Combined System/Acceptance TestingCombined System/Acceptance Testing

Users should be treated as
‘partners’ in the process.
Participate in and approve
test plan, test cases and test
results

User’s should avoid ‘rush to judgment’.
Defects are expected during testing, the
full-picture will not be known until later
in the process

To achieve schedule compression
May improve communication between
development staff and users
Beneficial when users have little or no
experience testing

10
© 2007 The University of Texas at Austin

Usability TestsUsability Tests
Subjective tests designed to measure user
friendliness from the user’s point of view

Understandability
Learn-ability
Communicativeness

Techniques
Interviews
Surveys
Observations

May test any aspect of use including
Ergonomics/comfort
Screen design
ADA accommodation

11
© 2007 The University of Texas at Austin

Acceptance Test CasesAcceptance Test Cases

“There is only
one rule in
designing test
cases:
cover all
features, but do
not make too
many test cases”

-Tsuneo Yamaura

“There is only
one rule in
designing test
cases:
cover all
features, but do
not make too
many test cases”

-Tsuneo Yamaura

Designed to test conditions
by which users can
determine if the software
meets the requirements
At least one test case per
user requirement
One use case = multiple
test cases
More positive test cases or
‘Happy Path’ tests than
negative test cases
Based on user interactions
with the system as
specified in use cases, user
scenarios, and user
requirements

12
© 2007 The University of Texas at Austin

Acceptance Test Cases Acceptance Test Cases –– how many?how many?

Enough to confirm the software can be
implemented
Prioritized requirements should drive testing

Test the riskiest areas of the software fully
Test the features or functions that are the
key elements of the business process
Idenfity the most complex requirements
Find out where the problem spots are

Ensuring coverage using traceability matrix
Run tests on all functions (requirement
sets or use cases)

13
© 2007 The University of Texas at Austin

What does a test case look like?What does a test case look like?
Test Case Identifier
Test Case Name
Test Objective
Test Item - what’s being tested
Set up instructions are the preconditions as
specified in the use case
Data input requirements – the values and
corresponding fields for entry, tolerances,
value ranges, etc.
Procedural requirements the exact
sequence of steps to be followed
Expected results are the post conditions as
specified in the use case

14
© 2007 The University of Texas at Austin

Test Case ExampleTest Case Example
Test Case 4.3.3 V. 1.0 Tester:
Display Maternity Patient Summary Test Date:

Objective: Test the function that allows the user to search, select
and display maternity patient summaries using patient name.
Summary includes patient name, ID, address/phone, age,
number of previous pregnancies, live births, pregnancy status,
due date or delivery date, applicable diagnosis codes and Rx’s.
Verify that the data is displayed as expected.

Test Description: Test will use data extracted from the current
database. The results of searches will be displayed on the new
user interface and will include up to 10 diagnosis codes and up
to 20 Rx summaries.

Test Conditions: The database will be loaded with all patient
records as of 12/31/2005. All database records have been
validated and are accurate. Records must have several patients
with same last name.

15
© 2007 The University of Texas at Austin

Test Case ExampleTest Case Example
Steps:
1)Enter a valid last and first name from the list, select search

1.1 Validate information displayed against report
2)Enter a name not on the list, select search

2.1 Validate message “error – patient not found”
3)Enter a valid last name from the list that appears multiple times,

select search
3.1 Validate patient’s listed are all the patients with the last name
3.2 Validate that no patients are included that should not be

4)Select patients from the list
4.1 Validate that information displayed to printed report
…

Post Conditions: No data will be changed or modified by this test.

Expected Results: A paper report from the current system as of
12/31/2005 is attached for verification.

Test Case Result: Pass _____ Fail_____

16
© 2007 The University of Texas at Austin

Finding Additional Test CasesFinding Additional Test Cases

Create additional test cases for alternate
courses
Plan some guerrilla test cases based on the
nastiest, most unusual, business situations
that can be thought up. The test may
include:

extreme boundary tests,
strange error conditions,
unusual values in complex algorithms and
computations,
non-standard process flow

Exploratory testing: Allow different testers to
test the use case, generating tests on the fly

17
© 2007 The University of Texas at Austin

Traceability MatrixTraceability Matrix

XR2UC-3
XR1UC-3

IR2-2UC-2
IR2-1UC-2

FR1UC-2
PER-1UC-1

PR3UC-1
PR2UC-1
PR1UC-1

UTC-6UTC-5UTC-4UTC-2UTC-1Req IDID
Test Case IDUse Case

a
i
l

t
e
d

s
s

P=Pass I=Incomplete

F=Fail X=Not tested

18
© 2007 The University of Texas at Austin

Before TestingBefore Testing
Have all requirements been reviewed and
approved including changes?
Have test criteria for requirements/use cases
been developed?
Has the test plan been developed, reviewed
and approved including acceptance criteria?
Are test cases written, traceability matrix
complete? Have they been reviewed and
approved?
Are resources available and appropriately
trained?
Has the test environment been established
including test data?
Have supporting test tools been established
for recording and reporting test results?

19
© 2007 The University of Texas at Austin

Documenting Test Case ResultsDocumenting Test Case Results

Evaluate test results
Pass – the test results match the expected
results
Fail – the test results do not match the
expected results

When a test fails:
Be sure it’s the software and not the test
design at fault
Review the data inputs are correct
Rerun the test, if necessary

Document results by recording
When the test took place
Pass/Fail

20
© 2007 The University of Texas at Austin

Managing Test DocumentationManaging Test Documentation

Careful documentation standards including
version control may be necessary on test cases
to avoid repeating mistakes
Establish a problem reporting system and
process that records and tracks any event that
requires investigation
Keep a test log to record the status of all test
cases and test cycles (hint: you can use the
traceability matrix)
Test status reports – regular summaries to
management on testing activities, issues and
metrics

21
© 2007 The University of Texas at Austin

Problem Reporting SystemProblem Reporting System
Identify the test case, tester and test date
Document actual results including screen prints
and error messages
Steps to reproduce the defect
Tester’s assessment of defect severity

Severe - Data loss, safety risk, or loss of major
business functionality without workaround
Moderate – Some loss of business functionality
with workaround
Minor - Cosmetic error

Tester’s assessment of fix priority
1. Must fix before release
2. May be okay to release before fixed
3. Fix when possible

22
© 2007 The University of Texas at Austin

Confirm Testing ResultsConfirm Testing Results

Review and analyze defect reports to
confirm tester’s assessment

Preliminary review by Acceptance Test
Leader or Team
Finalize the assessment
Defects logged
High priority items move forward for fix

23
© 2007 The University of Texas at Austin

Prioritizing Fixes and ChangesPrioritizing Fixes and Changes

High priority fixes are reviewed by the
developer

Debug
Assess work needed to correct
Update defect report

May be done by a team – sometimes called
Control Board that includes:

Acceptance Test Leader
Project Managers
Project Sponsor
Lead Developer

Control Board reviews and approves fixes
based on severity, cost, impact on release
date

24
© 2007 The University of Texas at Austin

Quality Test Reporting SystemQuality Test Reporting System

Benefits of well-documented test results
Reduces the time spent on re-writing and
re-testing
Improves tester and developer
relationship and satisfaction
Maintains team/tester credibility
Allows testers and developers to
concentrate on testing and fixing
Expedites/improves status reporting

25
© 2007 The University of Texas at Austin

Guide for Test ReportingGuide for Test Reporting

Structure: test carefully
Reproduce: test it again
Isolate: test it differently
Generalize: test it elsewhere
Compare: review similar test results
Summarize: relate test to intended business
use
Condense: trim unnecessary information
Disambiguate: use clear words
Neutralize: be fair and impartial
Review: make sure the report is complete

26
© 2007 The University of Texas at Austin

Working with Developers on DefectsWorking with Developers on Defects
Testing is a destructive process that provides
critical feedback to developers
Be hard on the product but considerate of the
developer
Report the findings, provide as much
supporting information as possible
Be open to working directly with the developer
to improve the developers understanding of
the problem and the fix

“Given enough eyeballs, all bugs are shallow (e.g., given a
large enough beta-tester and co-developer base, almost
every problem will be characterized quickly and the fix
obvious to someone).”

-E. Raymond

27
© 2007 The University of Texas at Austin

DebuggingDebugging
Process initiated
when a defect is
found

To discover the
source of the
problem
To repair the
problem

The problem may be
in the software code
or in the test case
Disagreements may
occur between users
and developers
during debugging

28
© 2007 The University of Texas at Austin

DebuggingDebugging
Common causes of disagreements:

Confusion over unclear or poorly specified
requirements
Requirements volatility - lots of customer
changes
Complex environments – distributed
environments and changes in
configurations, operating systems,
communications, platforms, etc.
Human error in code or test case
Gold plating or ‘feature-itis’
overcomplicating the software with a
fancy solution when a simple solution
would do just as well.

29
© 2007 The University of Texas at Austin

DonDon’’t Forget Regression Testst Forget Regression Tests
Re-execution of a
subset of tests that
have already passed
Ensures recent fixes
to the software have
not created
unintended
problems elsewhere
Increasing issues
with regression
tests may indicate a
stability problem

30
© 2007 The University of Texas at Austin

RetestingRetesting

Once the debugging is done and the problem
is repaired

Developers retest the code
New code is moved into the test
environment – sometimes called a build
Testers re-run test case or cases where
the defect was found
May re-run test cases with related
functionality

Update test documentation to reflect results

31
© 2007 The University of Texas at Austin

Good Enough Testing Good Enough Testing
Knowing when to stop testingKnowing when to stop testing……

When all of the most likely uses of the
system have been successfully tested
When the tests on highest priority
requirements, features, or functions pass
When regression tests are completing
without serious or unknown defects
When the risks of not releasing outweigh
the risks of not resolving the remaining
defects
Consider visibility, safety impact, financial
impact, user impact

Test smart, not hard!

32
© 2007 The University of Texas at Austin

Knowing when your done testingKnowing when your done testing
The Pareto Principle – 80% of the errors
come from 20% of the software components
Law of diminishing returns – when it costs
more to find the remaining bugs than it’s
worth
When the defect discovery rate and the
defect resolution rate converge

Time

R
ep

or
ts

, R
es

ol
ut

io
ns

Resolutions Reports

Note: Graph the
cumulative reports
and resolutions

33
© 2007 The University of Texas at Austin

NextNext……

Software Acceptance…

And Maintenance!

